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Abstract

Complex hypervirial perturbation theory (HVPT) is applied to the problem
of a harmonic oscillator with a perturbation gx*exp(ip), for which the
traditional Rayleigh—Schodinger perturbation theory has to be supplemented
by hyperasymptotics for obtaining accurate resonance energies in the negative
¢ region. Complex HVPT gives accurate results for positive ¢ and for negative
@ up to about [p| = 77. The case of a quartic perturbed oscillator is also treated.

PACS numbers: 03.65.—w, 02.30.Fn, 02.30.Tb, 02.60.—x, 31.15.—p

In their work on the harmonic oscillator with a cubic perturbation gx3 exp(ip) Alvarez and
Casares [1] explained the use of hyperasymptotic techniques to correct the perturbation-
theoretic complex eigenvalues in the region of negative ¢. They pointed out that the use
of the traditional (real) perturbation series for the problem would necessarily make E(—¢)
be the complex conjugate of E(¢) when a complex perturbation parameter is used. Their
complex rotation matrix results indicated, however, that there is an exponentially small
extra contribution at negative ¢ values. They showed how to estimate this contribution
by hyperasymptotics. The first point worth noting is that the results of [1] are somewhat better
than would be supposed by studying table 2 of [1], since the table takes the [14, 14] Padé
approximant estimate at positive ¢ as the perturbation reference energy at the corresponding
negative ¢ value, whereas it would be more appropriate to take the accurate complex dilatation
result at positive ¢ as the correct ‘sum to infinity’ of the perturbation method. For example,
at ¢ = —73; the use of the correct perturbation reference energy instead of the [14, 14]
estimate would correct the quoted perturbation plus hyperasymptotic result at g = 0.1 from
0.48519791 + 0.00467790i to 0.48520099 + 0.004 675 34i, which is in close agreement
with the quoted complex rotation matrix result, 0.485 201 00 +0.004 675 34i. The application
of our complex HVPT to the case directly gives the result 0.485200996 + 0.004 675 342i.
The complex HVPT has been described previously and applied to several resonance problems
[2]; the essential step in the method is the straightforward one of making all of the quantities
in the problem complex while using a reference potential of the form (WR +iW1)x? in a
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renormalized perturbation theory calculation [3]. The method was applied to the Hamiltonian
treated in [1]:

H = —1D*+ 1x* + gx’ exp(ip). (1)
The Hamiltonian was written in the partitioned form
[—1D?+ WxP] + A[(3 — W)x* + gx” exp(io) . )

The usual equations of hypervirial perturbation theory were used [3], except that the real
W of standard theory was replaced throughout by the complex form WR +iW [, which then
means that the other variables (in particular the perturbed energy coefficients) must be allowed
to become complex. In the numerical calculations A is held at the value 1 [3]. The sequence
of partial sums of the energy series was treated by a complex variable form of the Wynn
algorithm [2] to yield an accurate complex energy. Experience shows that the best choice for
WR is usually the ‘raw’ oscillator coefficient, so W R was held at the value % In principle
the results can be optimized by varying W1 to give the greatest number of stable digits of
output from the Wynn algorithm. For the ground state, the fixed value W1 = —% turns out to
be reasonably optimal for the range of ¢ values treated and so the results are reported for the
fixed choice W = (1, —1).

For positive ¢, the complex hypervirial method using a perturbation order of 98 (with
g = 0.1) gives results of very high accuracy; for example at ¢ = 7 it gives the real energy
as 0.512538 145939327, while at ¢ = 0 it gives the complex energy as 0.484 31599700 +
8.060211(—6)i. On moving to negative ¢ values the ‘obvious’ procedure would be to change
WI to % However, this would give exactly the wrong complex conjugation symmetry
between the results for positive and negative ¢. Thus the choice W1 = —1 was retained as

¢ was moved through zero into the negative region. The surprising resulzt found was that
for a reasonable distance into the negative ¢ region the complex HVPT results were still of
considerable accuracy. We used the complex basis matrix approach [4] to check the results;
it gives results of up to 16 digit accuracy and agrees (to the number of digits quoted) with
the complex dilatation ones quoted in [1, 5]. Table 1 shows the results (truncated for positive
@), with a sufficiently small interval in ¢ to reveal the gradual build-up of the exponentially
small contribution to the energy which destroys the complex conjugation symmetry between
positive and negative ¢ values. The results of table 1 show that the extra contribution for
negative ¢ is not the usual ‘exponentially small’ type of term which grows very rapidly in
some non-analytic manner (like the bound state energy contribution described in section 7 of
[3].) The extra contribution DR +1iD1 is a smooth function which varies linearly near ¢ = 0;
the results show that D R has a maximum in the vicinity of | ¢ |[= 0.065, while D1 has a zero at
roughly the same position. The complex energy is a smooth function of ¢; as was emphasized
by the authors of [1], the essential feature is the presence of a Stokes line at ¢ = 0, so that
the traditional perturbation series cannot represent the smooth complex energy function on
both sides of that line. The complex HVPT can be applied equally well to the excited states,
although the accuracy attainable is less than for the ground state. For example, the result
obtained for the n=1 resonance at ¢ = —0.1 (with g = 0.1) is 1.381 5536 + 0.0390 993i. The
results reported here do indicate, however, that the use of the complex variable form of the
perturbation theory can provide a direct estimate of the hyperasymptotic corrections worked
out in [1] for the Hamiltonian of equation (1). In [5] a method of Borel-Padé summation with
complex integration was used to produce complex energies from the Rayleigh—Schrodinger
perturbation theory. The complex hypervirial method was checked against the resonance
energies given in table 2 of [5] and was found to be able to give 2 or 3 extra decimal digits of
accuracy for the complex energy levels quoted in the table for the cubic perturbed oscillator
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Table 1. The complex HVPT resonance energies for the ground state of the Hamiltonian of
equation (1), with g = 0.1, W = (%, —%) and perturbation order 98. DR = ER(¢) — ER(—¢)
and DI = EI(¢) + EI(—¢).

@ ER EI DR DI

0.10 0.4848450036  —3.6042792(-3) - -

0.09 04847488132  —3.2574455(-3) - -
0.08 0.4846616500 —2.0906932(-3) - -
0.07 0.4845837953 —2.5530214 (-3) - -
0.06 04845154621 —2.1960130(-3) - -

0.05 0.4844568547
0.04  0.484408 1667
0.03  0.4843695788

—1.8362256 (=3) - -
—1.4739960 (—=3) -
~1.1096801 (=3) - -

0.02 0.4843412577 —7.4365307 (—4) - -

0.01 0.4843233533 —3.7630879 (—4) - -

0.00 0.4843159970 —8.0602106 (—6) - -
—0.01  0.4843192988 3.6066126 (—4)  4.0545 (—6) —1.56475 (=5)
—0.02  0.4843333451 7.2940633 (—4)  7.9126 (—6) —1.42467 (-5)
—0.03  0.484 3581957 1.0977087 (—=3)  1.13831(=5) —1.19714(-)5)
—0.04  0.4843938810 1.4650867 (—=3)  1.42857(=5) —8.9093 (—6)
—0.05  0.484 4403991 1.8310426 (—3)  1.64556 (=5) —5.1830(—6)
—0.06  0.4844977123 2.1950695 (=3) 177498 (=5) —9.435(-7)
—0.07  0.484 5657441 2.5566486 (—3)  1.80512(-5) 3.6272 (—6)
—0.08  0.484 6443760 29152553 (=3) 1.72740 (-5) 8.3231 (-5)
—0.09 0.484 7334438 32703620 (—3)  1.53694 (-5) 1.29165 (-5)
—0.10  0.484 8327348 3.6214425 (=3)  1.23288 (-5) 1.71633 (-5)

Table 2. The complex HVPT resonance energies for the ground state of the Hamiltonian of
equation (3), with g = 0.02, W = (%, —%) and perturbation order 98. DR = ER(¢) — ER(—¢)
and DI = EI(p) + EI(—g).

¢ ER EI DR DI

0.14 04839402106  —2.4853276 (=3) - -

0.12 04838836453  —2.1339120 (=3) - -

0.10 04838356137  —1.7808663 (—=3) - -

0.08 04837961882  —1.4264457 (=3) — -

0.06 04837654307  —1.0709109 (=3) — -

0.04 04837433922  —7.1452750 (—=4) — -

0.02 048373001121  —3.5756542 (=4) — -

0.00 04837256176  —2.9826537 (=7) - -
—0.02  0.4837299231 3.5699751 (—4) 1.890(—=7) —5.6791 (=7)
—0.04 048374330300  7.1404344 (—4)  3.622 (=7) —4.8406 (=7
—0.06  0.4837649258 1.0705600 (—=3)  5.049 (=7)  —3.5090 (—7)
—0.08  0.4837955844 14262676 (=3)  6.038 (=7) —1.781 (=7)
~0.10  0.483 8349653 17808877 (—3) 6484 (—7)  2.140 (=8)
—0.12  0.4838830135 21341443 (=3) 6318 (=7)  2.323(=7)
—0.14  0.483939660 24857647 (=3) 5507 (=7)  4.371(=7)

at ¢ = 0. The main feature of the calculation above is the lack of symmetry between the real
parts of the complex energy at ¢ and —¢. That there will not be perfect complex conjugation
symmetry of the FULL complex energy is clear at once, since there is a non-zero EI at
¢ = 0, associated with a resonance. Table 2 of [1] gives no perturbation estimate for ¢ = 0
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since the simple Rayleigh—Schrodinger perturbation series will give a zero imaginary part for
the complex energy at ¢ = 0. Numerical experiments showed that it is quite easy to apply
the complex HVPT to another case for which this perfect complex conjugation is obviously
lacking, namely the case of the Hamiltonian:

H = —%Dz + %xz — gx4 exp(ip). 3)

The behaviour of this Hamiltonian at ¢ = 0 was studied in [6] in connection with the use
of dispersion relations in the theory of the perturbed oscillator. We found that the complex
HVPT gives accurate complex energies for a wide range values of positive g at ¢ = 0; the
results at small g fit accurately to the non-analytic form O.Sg’% exp (—ﬁ) predicted by the
analysis given in [6]. Of more interest, however, is the variation of the complex energy with ¢
at fixed g. Table 2 shows the complex HVPT results for the case g = 0.02 and shows that the
behaviour of the ground state resonance energy as ¢ varies is quite similar to that appearing
in table 1, provided that the more complicated behaviour in the vicinity of branch points is
avoided. In table 2 a sufficient range of ¢ values is presented to make clear the presence of a
minimum in DR as a function of ¢, just as was found for the Hamiltonian (1).
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