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41 bis Avenue de l’Observatoire, BP 1615, 25010 Besançon Cedex, France
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Abstract
Complex hypervirial perturbation theory (HVPT) is applied to the problem
of a harmonic oscillator with a perturbation gx3 exp(iϕ), for which the
traditional Rayleigh–Schodinger perturbation theory has to be supplemented
by hyperasymptotics for obtaining accurate resonance energies in the negative
ϕ region. Complex HVPT gives accurate results for positive ϕ and for negative
ϕ up to about |ϕ| = π

24 . The case of a quartic perturbed oscillator is also treated.

PACS numbers: 03.65.−w, 02.30.Fn, 02.30.Tb, 02.60.−x, 31.15.−p

In their work on the harmonic oscillator with a cubic perturbation gx3 exp(iϕ) Alvarez and
Casares [1] explained the use of hyperasymptotic techniques to correct the perturbation-
theoretic complex eigenvalues in the region of negative ϕ. They pointed out that the use
of the traditional (real) perturbation series for the problem would necessarily make E(−ϕ)

be the complex conjugate of E(ϕ) when a complex perturbation parameter is used. Their
complex rotation matrix results indicated, however, that there is an exponentially small
extra contribution at negative ϕ values. They showed how to estimate this contribution
by hyperasymptotics. The first point worth noting is that the results of [1] are somewhat better
than would be supposed by studying table 2 of [1], since the table takes the [14, 14] Padé
approximant estimate at positive ϕ as the perturbation reference energy at the corresponding
negative ϕ value, whereas it would be more appropriate to take the accurate complex dilatation
result at positive ϕ as the correct ‘sum to infinity’ of the perturbation method. For example,
at ϕ = − π

24 the use of the correct perturbation reference energy instead of the [14, 14]
estimate would correct the quoted perturbation plus hyperasymptotic result at g = 0.1 from
0.485 197 91 + 0.004 677 90i to 0.485 200 99 + 0.004 675 34i, which is in close agreement
with the quoted complex rotation matrix result, 0.485 201 00 + 0.004 675 34i. The application
of our complex HVPT to the case directly gives the result 0.485 200 996 + 0.004 675 342i.
The complex HVPT has been described previously and applied to several resonance problems
[2]; the essential step in the method is the straightforward one of making all of the quantities
in the problem complex while using a reference potential of the form (WR + iWI)x2 in a
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renormalized perturbation theory calculation [3]. The method was applied to the Hamiltonian
treated in [1]:

H = − 1
2D2 + 1

2x2 + gx3 exp(iϕ). (1)

The Hamiltonian was written in the partitioned form
[− 1

2D2 + Wx2
]

+ λ
[(

1
2 − W

)
x2 + gx3 exp(iϕ)

]
. (2)

The usual equations of hypervirial perturbation theory were used [3], except that the real
W of standard theory was replaced throughout by the complex form WR + iWI , which then
means that the other variables (in particular the perturbed energy coefficients) must be allowed
to become complex. In the numerical calculations λ is held at the value 1 [3]. The sequence
of partial sums of the energy series was treated by a complex variable form of the Wynn
algorithm [2] to yield an accurate complex energy. Experience shows that the best choice for
WR is usually the ‘raw’ oscillator coefficient, so WR was held at the value 1

2 . In principle
the results can be optimized by varying WI to give the greatest number of stable digits of
output from the Wynn algorithm. For the ground state, the fixed value WI = − 1

2 turns out to
be reasonably optimal for the range of ϕ values treated and so the results are reported for the
fixed choice W = (

1
2 ,− 1

2

)
.

For positive ϕ, the complex hypervirial method using a perturbation order of 98 (with
g = 0.1) gives results of very high accuracy; for example at ϕ = π

2 it gives the real energy
as 0.512 538 145 939 327, while at ϕ = 0 it gives the complex energy as 0.484 315 997 00 +
8.060 211(−6)i. On moving to negative ϕ values the ‘obvious’ procedure would be to change
WI to 1

2 . However, this would give exactly the wrong complex conjugation symmetry
between the results for positive and negative ϕ. Thus the choice WI = − 1

2 was retained as
ϕ was moved through zero into the negative region. The surprising result found was that
for a reasonable distance into the negative ϕ region the complex HVPT results were still of
considerable accuracy. We used the complex basis matrix approach [4] to check the results;
it gives results of up to 16 digit accuracy and agrees (to the number of digits quoted) with
the complex dilatation ones quoted in [1, 5]. Table 1 shows the results (truncated for positive
ϕ), with a sufficiently small interval in ϕ to reveal the gradual build-up of the exponentially
small contribution to the energy which destroys the complex conjugation symmetry between
positive and negative ϕ values. The results of table 1 show that the extra contribution for
negative ϕ is not the usual ‘exponentially small’ type of term which grows very rapidly in
some non-analytic manner (like the bound state energy contribution described in section 7 of
[3].) The extra contribution DR + iDI is a smooth function which varies linearly near ϕ = 0;
the results show that DR has a maximum in the vicinity of |ϕ |= 0.065, while DI has a zero at
roughly the same position. The complex energy is a smooth function of ϕ; as was emphasized
by the authors of [1], the essential feature is the presence of a Stokes line at ϕ = 0, so that
the traditional perturbation series cannot represent the smooth complex energy function on
both sides of that line. The complex HVPT can be applied equally well to the excited states,
although the accuracy attainable is less than for the ground state. For example, the result
obtained for the n=1 resonance at ϕ = −0.1 (with g = 0.1) is 1.381 5536 + 0.0390 993i. The
results reported here do indicate, however, that the use of the complex variable form of the
perturbation theory can provide a direct estimate of the hyperasymptotic corrections worked
out in [1] for the Hamiltonian of equation (1). In [5] a method of Borel–Padé summation with
complex integration was used to produce complex energies from the Rayleigh–Schrödinger
perturbation theory. The complex hypervirial method was checked against the resonance
energies given in table 2 of [5] and was found to be able to give 2 or 3 extra decimal digits of
accuracy for the complex energy levels quoted in the table for the cubic perturbed oscillator
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Table 1. The complex HVPT resonance energies for the ground state of the Hamiltonian of
equation (1), with g = 0.1, W = ( 1

2 , − 1
2 ) and perturbation order 98. DR = ER(ϕ) − ER(−ϕ)

and DI = EI (ϕ) + EI (−ϕ).

ϕ ER EI DR DI

0.10 0.484 845 0636 −3.604 2792 (−3) – –
0.09 0.484 748 8132 −3.257 4455 (−3) – –
0.08 0.484 661 6500 −2.090 693 2 (−3) – –
0.07 0.484 583 7953 −2.553 0214 (−3) – –
0.06 0.484 515 4621 −2.196 0130 (−3) – –
0.05 0.484 456 8547 −1.836 2256 (−3) – –
0.04 0.484 408 1667 −1.473 9960 (−3) – –
0.03 0.484 369 5788 −1.109 6801 (−3) – –
0.02 0.484 341 2577 −7.436 5307 (−4) – –
0.01 0.484 323 3533 −3.763 0879 (−4) – –
0.00 0.484 315 9970 −8.060 2106 (−6) – –

−0.01 0.484 319 2988 3.606 6126 (−4) 4.0545 (−6) −1.564 75 (−5)
−0.02 0.484 333 3451 7.294 0633 (−4) 7.9126 (−6) −1.424 67 (−5)
−0.03 0.484 358 1957 1.097 7087 (−3) 1.138 31 (−5) −1.197 14 (−5)
−0.04 0.484 393 8810 1.465 0867 (−3) 1.428 57 (−5) −8.9093 (−6)
−0.05 0.484 440 3991 1.831 0426 (−3) 1.645 56 (−5) −5.1830 (−6)
−0.06 0.484 497 7123 2.195 0695 (−3) 1.774 98 (−5) −9.435 (−7)
−0.07 0.484 565 7441 2.556 6486 (−3) 1.805 12 (−5) 3.6272 (−6)
−0.08 0.484 644 3760 2.915 2553 (−3) 1.727 40 (−5) 8.3231 (−5)
−0.09 0.484 733 4438 3.270 3620 (−3) 1.536 94 (−5) 1.291 65 (−5)
−0.10 0.484 832 7348 3.621 4425 (−3) 1.232 88 (−5) 1.716 33 (−5)

Table 2. The complex HVPT resonance energies for the ground state of the Hamiltonian of
equation (3), with g = 0.02, W = ( 1

2 ,− 1
2 ) and perturbation order 98. DR = ER(ϕ) − ER(−ϕ)

and DI = EI (ϕ) + EI (−ϕ).

ϕ ER EI DR DI

0.14 0.483 940 2106 −2.485 3276 (−3) – –
0.12 0.483 883 6453 −2.133 9120 (−3) – –
0.10 0.483 835 6137 −1.780 8663 (−3) – –
0.08 0.483 796 1882 −1.426 4457 (−3) – –
0.06 0.483 765 4307 −1.070 9109 (−3) – –
0.04 0.483 743 3922 −7.145 2750 (−4) – –
0.02 0.483 730 01121 −3.575 6542 (−4) – –
0.00 0.483 725 6176 −2.982 6537 (−7) – –

−0.02 0.483 729 9231 3.569 9751 (−4) 1.890 (−7) −5.6791 (−7)
−0.04 0.483 743 303 00 7.140 4344 (−4) 3.622 (−7) −4.8406 (−7)
−0.06 0.483 764 9258 1.070 5600 (−3) 5.049 (−7) −3.5090 (−7)
−0.08 0.483 795 5844 1.426 2676 (−3) 6.038 (−7) −1.781 (−7)
−0.10 0.483 834 9653 1.780 8877 (−3) 6.484 (−7) 2.140 (−8)
−0.12 0.483 883 0135 2.134 1443 (−3) 6.318 (−7) 2.323 (−7)
−0.14 0.483 939 660 2.485 7647 (−3) 5.507 (−7) 4.371 (−7)

at ϕ = 0. The main feature of the calculation above is the lack of symmetry between the real
parts of the complex energy at ϕ and −ϕ. That there will not be perfect complex conjugation
symmetry of the FULL complex energy is clear at once, since there is a non-zero EI at
ϕ = 0, associated with a resonance. Table 2 of [1] gives no perturbation estimate for ϕ = 0
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since the simple Rayleigh–Schrödinger perturbation series will give a zero imaginary part for
the complex energy at ϕ = 0. Numerical experiments showed that it is quite easy to apply
the complex HVPT to another case for which this perfect complex conjugation is obviously
lacking, namely the case of the Hamiltonian:

H = − 1
2D2 + 1

2x2 − gx4 exp(iϕ). (3)

The behaviour of this Hamiltonian at ϕ = 0 was studied in [6] in connection with the use
of dispersion relations in the theory of the perturbed oscillator. We found that the complex
HVPT gives accurate complex energies for a wide range values of positive g at ϕ = 0; the
results at small g fit accurately to the non-analytic form 0.8g− 1

2 exp
(− 1

3g

)
predicted by the

analysis given in [6]. Of more interest, however, is the variation of the complex energy with ϕ

at fixed g. Table 2 shows the complex HVPT results for the case g = 0.02 and shows that the
behaviour of the ground state resonance energy as ϕ varies is quite similar to that appearing
in table 1, provided that the more complicated behaviour in the vicinity of branch points is
avoided. In table 2 a sufficient range of ϕ values is presented to make clear the presence of a
minimum in DR as a function of ϕ, just as was found for the Hamiltonian (1).
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